test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19254

Title: Development of Automated Robotic Microassembly for Three-dimensional Microsystems
Authors: Wang, Lidai
Advisor: Celghorn, William L.
Mills, James
Department: Mechanical and Industrial Engineering
Keywords: Microassembly
Micromanipulation
Micro-robotics
Automated control
Micro-electromechanical systems
Issue Date: 3-Mar-2010
Abstract: Robotic microassembly is a process to leverage intelligent micro-robotic technologies to manipulate and assemble three-dimensional complex micro-electromechanical systems (MEMS) from a set of simple-functional microparts or subsystems. As the development of micro and nano-technologies has progressed in recent years, complex and highly integrated micro-devices are required. Microassembly will certainly play an important role in the fabrication of the next generation of MEMS devices. This work provides advances in robotic microassembly of complex three-dimensional MEMS devices. The following key technologies in robotic microassembly are studied in this research: (i) the design of micro-fasteners with high accuracy, high mechanical strength, and reliable electrical connection, (ii) the development of a microassembly strategy that permits the manipulation of microparts with multiple degrees of freedom (DOFs) and high accuracy, (iii) fully automated microassembly based on computer vision, (iv) micro-force sensor design for microassembly. An adhesive mechanical micro-fastener is developed to assemble micro-devices. Hybrid microassembly strategy, which consists of pick-and-place and pushing-based manipulations, is employed to assemble three-dimensional micro-devices with high flexibility and high accuracy. Novel three-dimensional rotary MEMS mirrors have been successfully assembled using the proposed micro-fastener and manipulation strategy. Fully automatic pick-and-place microassembly is successfully developed based on visual servo control. A vision-based contact sensor is developed and applied to automatic micro-joining tasks. Experimental results show that automatic microassembly has achieved sub-micron accuracy, high efficiency, and high success rate. This work has provided an effective approach to construct the next generation of MEMS devices with high performance, high efficiency, and low cost.
URI: http://hdl.handle.net/1807/19254
Appears in Collections:Doctoral
Department of Mechanical & Industrial Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Wang_Lidai_200911_PhD_thesis.pdf7.59 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft