test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19279

Title: Interacting Disturbances in the Boreal Forest and the Importance of Spatial Legacies at Multiple Scales
Authors: James, Patrick Michael Arthur
Advisor: Fortin, Marie-Josee
Department: Forestry
Keywords: landscape ecology
wavelet analysis
forest disturbance
spruce budworm
Issue Date: 3-Mar-2010
Abstract: Forest disturbances and the spatial patterns they create affect ecosystem processes through their influence on forest vegetation from individual trees to landscapes. In the boreal and mixed-wood forests of eastern Canada the main agents of disturbance are logging, fire, and defoliation by the spruce budworm (SBW, Choristoneura fumiferana). These disturbances are similar in that they remove forest biomass and influence forest succession but also distinct in that logging creates patterns that are different than those created by natural disturbances. All disturbances are indirectly linked to each other through their mutual effects on forest spatial structure and succession. Through such feedbacks, spatial disturbance legacies can facilitate or constrain further disturbances, including forest management. Surprisingly, the long term spatial consequences of interactions among multiple natural and anthropogenic disturbances remain largely unexplored. This thesis investigates how, and at what spatial scale, legacies in forest composition and age structure influence natural disturbance dynamics, and how natural disturbances constrain forest management. I address four specific questions: (i) For how long do spatial legacies of different forest management strategies persist on the landscape? (ii) How do interactions among logging, fire, SBW, and succession affect timber availability and long term forest patterns in age and composition? (iii) How do these patterns differ from those created by each disturbance individually? And, (iv) How can management be used to reduce the extent and severity of fires and SBW defoliation through the manipulation of forest structure? The key scientific innovations of this thesis are: (i) Characterization of the duration and influence of spatial legacies on forest disturbances and sustainability; (ii) Development of a dynamic spatial forest simulation model that includes distinct successional rules that respond to different types of disturbance and shifts in disturbance regimes; and, (iii) Development and application of a wavelet-based significance testing framework to identify key scales of expression in forest spatial patterns. These innovations provide a scientific basis for landscape level forest management strategies designed to reduce the long term impacts of defoliating insects and to meet multiple objectives.
URI: http://hdl.handle.net/1807/19279
Appears in Collections:Doctoral
Faculty of Forestry - Doctoral theses

Files in This Item:

File Description SizeFormat
James_Patrick_MA_200911_PhD_Thesis.pdf7.19 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft