test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/19551

Title: Investigation of Community Dynamics and Dechlorination Processes in Chlorinated Ethane-degrading Microbial Cultures
Authors: Grostern, Ariel
Advisor: Edwards, Elizabeth A.
Department: Cell and Systems Biology
Keywords: bioremediation
microbial ecology
reductive dechlorination
chlorinated ethanes
Issue Date: 22-Mar-2010
Abstract: The purpose of this research was to investigate the microorganisms, genetics and biochemistry of anaerobic dechlorination of chlorinated ethanes, which are common groundwater contaminants. Specifically, this project used mixed microbial cultures to study the dechlorination of 1,2-dichloroethane (1,2-DCA), 1,1,2-trichloroethane (1,1,2-TCA) and 1,1,1-trichloroethane (1,1,1-TCA). A mixed microbial culture enriched from a contaminated multilayered aquifer in West Louisiana dechlorinated 1,2-DCA, 1,1,2-TCA, tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride (VC) to non-toxic ethene when amended with ethanol as the electron donor. 16S rRNA gene sequence analysis revealed the presence of the putative dechlorinating organisms Dehalobacter and Dehalococcoides spp. Denaturing gradient gel electrophoresis analysis and quantitative PCR (qPCR) with species-specific primers demonstrated that both organisms grew during the dichloroelimination of 1,2-DCA to ethene. Conversely, during the dichloroelimination of 1,1,2-TCA to VC only Dehalobacter grew, while during the reductive dechlorination of VC to ethene only Dehalococcoides grew. Further enrichment with 1,2-DCA, H2 and acetate yielded a co-culture of Dehalobacter and Acetobacterium spp. that did not dechlorinate other chlorinated ethanes or ethenes. Dehalobacter grew in the presence but not in the absence of 1,2-DCA, while Acetobacterium growth was not affected by 1,2-DCA. A novel putative Dehalobacter-associated 1,2-DCA reductive dehalogenase gene was identified and was shown to be transcribed only in the presence of 1,2-DCA. An enrichment microbial culture derived from a 1,1,1-TCA-contaminated site in the northeastern United States was also studied. This culture, referred to as MS, reductively dechlorinated 1,1,1-TCA to 1,1-dichloroethane (1,1-DCA) and then to monochloroethane (CA) when amended with methanol, ethanol, acetate and lactate. 16S rRNA gene sequence analysis revealed the presence of the putative dechlorinating organism Dehalobacter sp., whose growth during 1,1,1-TCA and 1,1-DCA dechlorination was confirmed by qPCR. In the presence of chlorinated ethenes, dechlorination 1,1,1-TCA by the culture MS was slowed, while dechlorination of 1,1-DCA was completely inhibited. Experiments with cell-free extracts and whole cell suspensions of culture MS suggested that chlorinated ethenes have direct inhibitory effects on 1,1,1-TCA reductive dehalogenase(s), while the inhibition of 1,1-DCA dechlorination may be due to effects on non-dehalogenase components of Dehalobacter sp. cells. Additionally, two novel reductive dehalogenase genes associated with 1,1,1-TCA reductive dechlorination were identified.
URI: http://hdl.handle.net/1807/19551
Appears in Collections:Doctoral
Department of Cell and Systems Biology - Doctoral theses

Files in This Item:

File Description SizeFormat
Grostern_Ariel_B_200903_PhD_thesis.pdf3.88 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.