test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24302

Title: Planning, Design and Scheduling of Flex-route Transit Service
Authors: Alshalalfah, Baha Waheed Yousef
Advisor: Shalaby, Amer Saïd
Department: Civil Engineering
Keywords: Flex-Route Transit Service
Transit Scheduling
Constraint Programming
Issue Date: 13-Apr-2010
Abstract: The rapid expansion of low-density suburban areas in North America has led to new travel patterns that require transit services to be more flexible. Flex-Route transit service, which combines fixed-route transit service with elements of demand-responsive transit service, has emerged as a viable transit option to address the travel needs of the residents of these areas. Existing literature in this field, however, is limited and lacks any comprehensive analysis of Flex-Route planning, design and scheduling. This research aims at exploring Flex-Route transit service to provide detailed guidelines for the planning and design of the service, as well as developing a new scheduling system for this type of unique service. Accordingly, the objectives of this research are: assessing the practicality of Flex-Route transit service in serving low-density suburban areas; identifying essential Flex-Route planning steps and design parameters; determining the feasibility and cost of replacing fixed-route transit with Flex-Route service; and developing a Flex-Route-specific dynamic scheduling system that relies on recent developments in computer and communication technologies. In this regard, we develop an analytical model that addresses several design parameters and provide a detailed analysis that includes, among other parameters, finding optimal values for Flex-Route service area and slack time. Furthermore, the analytical model includes a feasibility and cost analysis that estimates the cost incurred by several stakeholders if Flex-Route service is chosen to replace fixed-route service. The core of the scheduling system is a new developed algorithm – the Constrained-Insertion Algorithm- that exploits the powerful search techniques of Constraint Programming. The scheduling system can handle the daily operations of Flex-Route transit services; it accepts daily (or dynamic) inputs and, in minimal time, produces very cost-effective and reliable schedules. Moreover, the scheduling system has the ability to be used as simulation tool to allow transit operators to assess the feasibility and performance of proposed Flex-Route transit services before implementation. The applicability of the analytical model as well as the performance of the scheduling system were subsequently evaluated and validated through process that included testing on a case study in the City of Oakville, Canada.
URI: http://hdl.handle.net/1807/24302
Appears in Collections:Doctoral
Department of Civil Engineering - Doctoral theses

Files in This Item:

File Description SizeFormat
Alshalalfah_Baha_W_200909_PhD_thesis.pdf2.08 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.