test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24351

Title: Sources and Fate of Organochlorine Pesticides in North America and the Arctic
Authors: Jantunen, Liisa M.
Advisor: Bidleman, Terry F.
Department: Chemical Engineering and Applied Chemistry
Keywords: organochlorine pesticides
air-water gas exchange
toxaphene
hexachlorocyclohexanes
Issue Date: 21-Apr-2010
Abstract: Atmospheric transport and air-water exchange of organochlorine pesticides (OCPs) were investigated in temperate North America and the Arctic. OCPs studied were hexachlorocyclohexanes (HCHs, a-, b- and g-isomers), components of technical chlordane (trans- and cis-chlordane, trans-nonachlor), dieldrin, heptachlor exo-epoxide and toxaphene. Air and water samples were taken on cruises in the Great Lakes and Arctic to determine concentrations and gas exchange flux direction and magnitude. The Henry’s law constant, which describes the equilibrium distribution of a chemical between air and water, was determined for several OCPs as a function of temperature and used to assess the net direction of air-water exchange. Air samples were collected in Alabama to investigate southern U.S. sources of OCPs. Chemical markers (isomers, and enantiomers of chiral OCPs) were employed to infer sources and trace gas exchange. Elevated air concentrations of toxaphene and chlordanes were found in Alabama relative to the Great Lakes, indicating a southern U.S. source. Profiles of toxaphene compounds in air were similar to those in soil by being depleted in easily degraded species, suggesting that soil emissions control air concentrations. Gas exchange fluxes in the Great Lakes indicated near-equilibrium between air and water with excursions to net volatilization or deposition. Net volatilization of a-HCH from the Arctic Ocean was traced by evasion of non-racemic a-HCH into the atmosphere.
URI: http://hdl.handle.net/1807/24351
Appears in Collections:Doctoral
Department of Chemical Engineering and Applied Chemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Jantunen_Liisa_M_201003_PhD_Thesis.pdf3.5 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft