test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24386

Title: Monitoring and Diagnosis for Autonomic Systems: A Requirement Engineering Approach
Authors: Wang, Yiqiao
Advisor: Mylopoulos, John
Department: Computer Science
Keywords: monitor
autonomic computing
Issue Date: 21-Apr-2010
Abstract: Autonomic computing holds great promise for software systems of the future, but at the same time poses great challenges for Software Engineering. Autonomic computing research aims to design software systems that self-configure, self-repair, self-optimize and self-protect, so as to reduce software maintenance cost while improving performance. The aim of our research is to develop tool-supported methodologies for designing and operating autonomic systems. Like other researchers in this area, we assume that autonomic system architectures consist of monitoring, analysis/diagnosis, planning, and execution components that define a feedback loop and serve as the basis for system self-management. This thesis proposes an autonomic framework founded on models of requirements and design. This framework defines the normal operation of a software system in terms of models of its requirements (goal models) and/or operation (statechart models). These models determine what to monitor and how to interpret log data in order to diagnose failures. The monitoring component collects and manages log data. The diagnostic component analyzes log data, identifies failures, and pinpoints problematic components. We transform the diagnostic problem into a propositional satisfiability (SAT) problem solvable by off-the-shelf SAT solvers. Log data are preprocessed into a compact propositional encoding that scales well with growing problem size. For repair, our compensation component executes compensation actions to restore the system to an earlier consistent state. The framework repairs failures through reconfiguration when monitoring and diagnosis use requirements. The reconfiguration component selects a best system reconfiguration that contributes most positively to the system's non-functional requirements. It selects a reconfiguration that achieves this while reconfiguring the system minimally. The framework does not currently offer a repair mechanism when monitoring and diagnosis use statecharts. We illustrate our framework with two medium-sized, publicly-available case studies. We evaluate the framework's performance through a series of experiments on randomly generated and progressively larger specifications. The results demonstrate that our approach scales well with problem size, and can be applied to industrial sized software applications.
URI: http://hdl.handle.net/1807/24386
Appears in Collections:Doctoral
Department of Computer Science - Doctoral theses

Files in This Item:

File Description SizeFormat
Wang_Yiqiao_201003_PhD_thesis.pdf3.99 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.