test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24703

Title: Verdazyl Radicals as Mediators in Living Radical Polymerizations and as Novel Substrates for Heterocyclic Syntheses
Authors: Chen, Eric Kuan-Yu
Advisor: Georges, Michael
Department: Chemistry
Keywords: stable free radical
living radical polymerization
diversity-oriented synthesis
azomethine imine
Issue Date: 5-Aug-2010
Abstract: Verdazyl radicals are a family of multicoloured stable free radicals. Aside from the defining backbone of four nitrogen atoms, these radicals contain multiple highly modifiable sites that grant them a high degree of derivatization. Despite having been discovered more than half a century ago, limited applications have been found for the verdazyl radicals and little is known about their chemistry. This thesis begins with an investigation to determine whether verdazyl radicals have a future as mediating agents in living radical polymerizations and progresses to their application as substrates for organic synthesis, an application that to date has not been pursued either with verdazyl or nitroxide stable radicals. The first part of this thesis describes the successful use of the 1,5-dimethyl-3-phenyl-6-oxoverdazyl radical as a mediating agent for styrene and n-butyl acrylate stable free radical polymerizations. The study of other verdazyl derivatives demonstrated the impact of steric and electronic properties of the verdazyl radicals on their ability to mediate polymerizations. The second part of this thesis outlines the initial discovery and the mechanistic elucidation of the transformation of the 1,5-dimethyl-3-phenyl-6-oxoverdazyl radical into an azomethine imine, which in the presence of dipolarophiles, undergoes a [3+2] 1,3-dipolar cycloaddition reaction to yield unique pyrazolotetrazinone structures. The reactivity of the azomethine imine and the scope of the reaction were also examined. The third part of this thesis describes the discovery and mechanistic determination of a base-induced rearrangement reaction that transforms the verdazyl-derived pyrazolotetrazinone cycloadducts into corresponding pyrazolotriazinones or triazole structures. The nucleophilicity, or the lack thereof, of the base employed leading to various rearrangement products was examined in detail. The final part of this thesis demonstrates the compatibility of the verdazyl-initiated cycloaddition and rearrangement reactions with the philosophy of diversity-oriented synthesis in generating libraries of heterocycles. A library of verdazyl-derived heterocycles was generated in a short amount of time and was tested non-specifically for biological activity against acute myeloid leukemia and multiple myeloma cell lines. One particular compound showed cell-killing activity at the 250 mM range, indicating future potential for this chemistry in the field of drug discovery.
URI: http://hdl.handle.net/1807/24703
Appears in Collections:Doctoral
Department of Chemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Chen_Eric_KY_201006_PhD_thesis.pdf2.25 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.