test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24707

Title: Evolutionary Ecology of Social Interactions among Plants
Authors: Biernaskie, Jay
Advisor: Abrams, Peter
Department: Ecology and Evolutionary Biology
Keywords: social evolution
sex allocation
animal foraging
mathematical model
Issue Date: 6-Aug-2010
Abstract: Neighbouring plants can interact strongly, competing for resources including light, water, animal mutualists, and local germination sites. From an evolutionary perspective, this implies that a plant’s best resource acquisition strategy will usually depend on the traits of its neighbours, and for plants in particular, neighbours are often genealogical relatives. Here, I use a combination of theory and experiments to expose some important consequences of social interactions among plants. The first model analyzes selection on traits used to attract pollinators, showing that competitive interactions (in the absence of local relatedness) can select for exaggerated secondary sexual characters. To complement this model, I performed experiments that confirm the mechanisms by which adaptive pollinator foraging naturally leads to interactions among plants. The observed foraging behaviour (of bumble bees) also provides unique evidence for ‘Bayesian foraging’, a sophisticated type of resource assessment that depends on prior experience in a particular environment. A second model considers how selection on the sex allocation of cosexual, animal-dispersed plants leads to competition and cooperation over local germination sites, sometimes leading to the origin of gender dimorphism. The model reveals novel ecological contexts in which disruptive selection on sex allocation can arise, and in general, illustrates how selection for cooperation can facilitate or inhibit evolutionary diversification. In the models considered here, cooperation is indiscriminant, but plants might also assess the relatedness of neighbours and cooperate with kin over non-kin. In the final chapter, I present experimental evidence that is consistent with preferential cooperation over soil resources among sibling plants. This study is the first to link a potentially cooperative resource allocation strategy with an increase in the mean fitness of related plants.
URI: http://hdl.handle.net/1807/24707
Appears in Collections:Doctoral
Department of Ecology & Evolutionary Biology - Doctoral theses

Files in This Item:

File Description SizeFormat
Biernaskie_Jay_M_201007_PhD_thesis.pdf9.99 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.