test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24739

Title: Studies on Signal Transduction Mechanisms in Rhabdomyosarcoma
Authors: Durbin, Adam
Advisor: Malkin, David
Department: Medical Biophysics
Keywords: rhabdomyosarcoma
cell signaling
tumor suppressor
insulin-like growth factor
signal transduction
estrogen receptor
integrin-linked kinase
myosin light chain
Issue Date: 6-Aug-2010
Abstract: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood, with two predominant histologic subtypes: embryonal and alveolar. These histologies display distinct clinical courses, and despite refinements in dose and duration of multimodality therapy, the 5-year overall survival of patients diagnosed with metastatic RMS remains <30%. Thus, there is an urgent need to define novel targets for therapeutic intervention. Interrogation of cancer cell signal transduction pathways that regulate the pathogenic behaviours of tumor cells has been successful in defining targets in numerous tumor types. These have ultimately yielded clinically-relevant drugs that have improved the disease-free and overall survival of patients diagnosed with cancer. Work contained in this thesis describes the interrogation of several potential targets for inhibition in RMS. Interruption of RMS cell proliferation, survival and apoptosis is examined through disruption of the protein kinase integrin-linked kinase (ILK) and the nuclear receptor estrogen-receptor β. ILK, in particular, is demonstrated to have dual competing functions through the regulation of c-jun amino-terminal kinase (JNK) signaling: an oncogene in alveolar, and a tumor suppressor in embryonal RMS. These findings are recapitulated in other tumor cell lines, indicating that expression levels of JNK1 correlate with ILK function in a broad spectrum of tumor types. Furthermore, interruption of rhabdomyosarcoma cell migration as a surrogate marker of metastasis is examined through disruption of the stromal-cell derived factor 1α/chemokine (CXC)receptor 4 signaling network, as well as through cooperative interactions between ILK and the mammalian target of rapamycin. Finally, we demonstrate that the insulin-like growth factor pathway is a potential target for therapeutic inhibition, which also distinguishes tumors of embryonal and alveolar histology. These studies provide a rationale for the development of novel agents, as well as the use of established drugs targeting these pathways in rhabdomyosarcoma.
URI: http://hdl.handle.net/1807/24739
Appears in Collections:Doctoral
Department of Medical Biophysics - Doctoral theses

Files in This Item:

File Description SizeFormat
Durbin_Adam_D_201006_PhD_thesis.pdf16.53 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.