test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24768

Title: Role of EphB Family Receptors in Regulating Axon Guidance in the Mammalian Central Nervous System
Authors: Ho, Stephanie
Advisor: Henderson, Jeffrey T.
Department: Pharmaceutical Sciences
Keywords: Axon Guidance
Issue Date: 13-Aug-2010
Abstract: Neural function depends on precise wiring of axon during development. Previous studies have demonstrated that the erythropoietin producing hepatocellular carcinoma (Eph) family of tyrosine receptor kinases is crucial for the proper development of a number of neural circuits in the mammalian central nervous system (CNS). Mice lacking Eph receptors have been shown to exhibit deficits in pathways which include the thalamocortical, callosal, retinal and corticospinal tract. Due to the large number of Eph family members, the relative contribution of each receptor to axon pathfinding and neural function remains elusive. In this thesis, I have addressed the function of EphA4, EphB2 and EphB3 in the regulating the formation of interhemispheric projections within the forebrain and motor axon connections within the spinal cord using EphA4, EphB2 and EphB3and combinatorial null mice. To perform a detailed examination of the process of axon guidance regulated by these receptors within the forebrain, high resolution magnetic resonance imaging (MRI), immunofluorescence and in vivo stereotactic fluorescent labeling were performed. This work resulted in the development and validation of MRI-based analytic tools performed using EphB2 mutants which we have previously shown to exhibit specific morphologic defects in the anterior commissure (AC). Analysis of EphA4 null mice using high resolution MRI revealed for the first time that in addition to errors of midline crossing, loss of EphA4 activity results in a positional reorganization of the rostral AC. Results demonstrate that while EphB2 and A4 each regulate distinct aspects of guidance within ACpp, these receptors also operate cooperatively to control the guidance of axons in the pars anterior of the AC, a pathway not been previously implicated in Eph-mediated guidance. With respect to the spinal cord, mice deficient in EphB2 and EphA4 display prominent axon guidance errors in the medial subsets of the lateral motor column (LMCm); neurons which normally innervate ventral limb musculature. Finally, I have addressed the functional effect which Eph mutants exhibit with respect to motor behavior by examining a detailed set of motor coordination parameters
URI: http://hdl.handle.net/1807/24768
Appears in Collections:Doctoral
Leslie L. Dan Faculty of Pharmacy - Doctoral theses

Files in This Item:

File Description SizeFormat
Ho_Stephanie_KY_201006_PhD_Thesis.pdfMain Body of Thesis9.29 MBAdobe PDF
Ho_Stephanie_KY_201006_PhD_appendixarticle.pdfAppendix Articles8.25 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.