test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24790

Title: Principal Component Analysis of Gramicidin
Authors: Kurylowicz, Martin
Advisor: Pomès, Régis
Department: Biochemistry
Keywords: Principal Component Analysis
Molecular Dynamics
Gramicidin
Nonlinear Dynamics
Issue Date: 13-Aug-2010
Abstract: Computational research making use of molecular dynamics (MD) simulations has begun to expand the paradigm of structural biology to include dynamics as the mediator between structure and function. This work aims to expand the utility of MD simulations by developing Principal Component Analysis (PCA) techniques to extract the biologically relevant information in these increasingly complex data sets. Gramicidin is a simple protein with a very clear functional role and a long history of experimental, theoretical and computational study, making it an ideal candidate for detailed quantitative study and the development of new analysis techniques. First we quantify the convergence of our PCA results to underwrite the scope and validity of three 64 ns simulations of gA and two covalently linked analogs (SS and RR) solvated in a glycerol mono-oleate (GMO) membrane. Next we introduce a number of statistical measures for identifying regions of anharmonicity on the free energy landscape and highlight the utility of PCA in identifying functional modes of motion at both long and short wavelengths. We then introduce a simple ansatz for extracting physically meaningful modes of collective dynamics from the results of PCA, through a weighted superposition of eigenvectors. Applied to the gA, SS and RR backbone, this analysis results in a small number of collective modes which relate structural differences among the three analogs to dynamic properties with functional interpretations. Finally, we apply elements of our analysis to the GMO membrane, yielding two simple modes of motion from a large number of noisy and complex eigenvectors. Our results demonstrate that PCA can be used to isolate covariant motions on a number of different length and time scales, and highlight the need for an adequate structural and dynamical account of many more PCs than have been conventionally examined in the analysis of protein motion.
URI: http://hdl.handle.net/1807/24790
Appears in Collections:Doctoral
Department of Biochemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Kurylowicz_Martin__201006_PhD_thesis.pdf8.44 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft