test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24849

Title: Tidal Dissipation in Extrasolar Planets
Authors: Pena, Fernando Gabriel
Advisor: Wu, Yanqin
Department: Astronomy and Astrophysics
Keywords: tidal dissipation
inertial modes
close binaries
hot Jupiters
Rings of Saturn
pseudospectral method
Chebyshev expansion
astrophysics
dynamical tide
asteroseismology
Issue Date: 1-Sep-2010
Abstract: Many known extra-solar giant planets lie close to their host stars. Around 60 have their semi-major axes smaller than 0.05 AU. In contrast to planets further out, the vast majority of these close-in planets have low eccentricity orbits. This suggests that their orbits have been circularized likely due to tidal dissipation inside the planets. These exoplanets share with our own Jupiter at least one trait in common: when they are subject to periodic tidal forcing, they behave like a lossy spring, with a tidal ``quality factor'', Q, of order 10^5. This parameter is the ratio between the energy in the tide and the energy dissipated per period. To explain this, a possible solution is resonantly forced internal oscillation. If the frequency of the tidal forcing happens to land on that of an internal eigenmode, this mode can be resonantly excited to a very large amplitude. The damping of such a mode inside the planet may explain the observed Q value. The only normal modes that fall in the frequency range of the tidal forcing (~ few days) are inertial modes, modes restored by the Coriolis force. We present a new numerical technique to solve for inertial modes in a convective, rotating sphere. This technique combines the use of an ellipsoidal coordinate system with a pseudo-spectral method to solve the partial differential equation that governs the inertial oscillations. We show that, this technique produces highly accurate solutions when the density profile is smooth. In particular, the lines of nodes are roughly parallel to the ellipsoidal coordinate axes. In particular, using these accurate solutions, we estimate the resultant tidal dissipation for giant planets, and find that turbulent dissipation of inertial modes in planets with smooth density profiles do not give rise to dissipation as strong as the one observed. We also study inertial modes in density profiles that exhibit discontinuities, as some recent models of Jupiter show. We found that, in this case, our method could not produce convergent solutions for the inertial modes. Additionally, we propose a way to observe inertial modes inside Saturn indirectly, by observing waves in its rings that may be excited by inertial modes inside Saturn.
URI: http://hdl.handle.net/1807/24849
Appears in Collections:Doctoral
Department of Astronomy & Astrophysics - Doctoral theses

Files in This Item:

File Description SizeFormat
Pena_Fernando_G_201006_PhD_thesis.pdf3.69 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft