test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24869

Title: Chemical Kinetic Modeling of Biofuel Combustion
Authors: Sarathy, Subram Maniam
Advisor: Thomson, Murray J.
Department: Chemical Engineering and Applied Chemistry
Keywords: biofuel
combustion modeling
Issue Date: 1-Sep-2010
Abstract: Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene, thereby reducing the production of soot precursors. The study concludes that the oxygenated molecules in biofuels follow similar combustion pathways to the hydrocarbons in petroleum fuels. The oxygenated moiety's ability to sequester carbon from forming soot precursors is highlighted. However, the direct formation of oxygenated hydrocarbons warrants further investigation into the environmental and health impacts of practical biofuel combustion systems.
URI: http://hdl.handle.net/1807/24869
Appears in Collections:Doctoral
Department of Chemical Engineering and Applied Chemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Sarathy_Subram_M_20106_PhD_thesis.pdf3.56 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.