test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24879

Title: An Investigation of Nicotine Metabolism in Mice: The Impact of Pharmacological Inhibition and Genetic Influences on Nicotine Pharmacology
Authors: Siu, Eric C. K.
Advisor: Tyndale, Rachel
Department: Pharmacology
Keywords: Nicotine
Mice
CYP2A5
CYP2A6
Selegiline
Methoxsalen
Nicotine Self-administration
Genetic
Tail-flick
Hot-plate
Mechanism-based Inhibition
Smoking
Metabolism
Issue Date: 1-Sep-2010
Abstract: INTRODUCTION: Smoking is one of the single greatest causes of numerous preventable diseases. We were interested in developing an animal model of nicotine metabolism that can be used to examine the effects of potential CYP2A6 inhibitors on nicotine metabolism and nicotine-mediated behaviours. Pharmacogenetic studies have demonstrated that in humans, smoking behaviour is associated with rates of nicotine metabolism by the CYP2A6 enzyme. Mouse CYP2A5 shares structural and functional similarities to human CYP2A6 and has been implicated in nicotine self-administration behaviours in mice, therefore the mouse represents a potential animal model for studying nicotine metabolism. METHODS: We characterized nicotine and cotinine metabolism in two commonly used mouse strains (DBA/2 and C57Bl/6). We also examined the association between nicotine self-administration behaviours and nicotine metabolism, and the impact of direct manipulation (i.e. inhibition) of nicotine metabolism on nicotine pharmacodynamics (hot-plate and tail-flick tests) in mice. Finally, we studied the effect of selegiline (a known cytochrome P450 mechanism-based inhibitor) on nicotine metabolism in mice and in human CYP2A6. RESULTS: Nicotine metabolism in mice in vitro was mediated by CYP2A5, and this enzyme was responsible for over 70% and 90% of the metabolism of nicotine to cotinine and cotinine to 3-hydroxycotinine as shown by immuno-inhibition studies, respectively. A polymorphism in CYP2A5 between mouse strains, known to alter the probe substrate coumarin’s metabolism, did not affect nicotine metabolism but dramatically altered cotinine metabolism. Nicotine self-administration behaviour in mice was associated with level of hepatic CYP2A5 proteins and rates of nicotine metabolism in male mice. In inhibition studies, the CYP2A5/6 inhibitor methoxsalen inhibited both in vitro and in vivo nicotine metabolism in mice and substantially increased the anti-nociceptive effect of nicotine. Finally, selegiline was found to be an inhibitor of CYP2A5 decreasing nicotine metabolism in vitro and in vivo in mice. Moreover, we showed that selegiline is a mechanism-based inhibitor of CYP2A6 inhibiting nicotine metabolism irreversibly. CONCLUSION: The above data suggested that the mouse model may be suitable for examining the impact of inhibition (and genetic variation) on nicotine metabolism and nicotine-mediated behaviours and may potentially be used to screen for novel inhibitors of nicotine metabolism.
URI: http://hdl.handle.net/1807/24879
Appears in Collections:Doctoral
Department of Pharmacology and Toxicology - Doctoral theses

Files in This Item:

File Description SizeFormat
Siu_Eric_C_K_201006_PhD_thesis.pdf3.17 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft