test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24896

Title: Elucidating Differences in Osteoclast Activation Mechanisms: Looking for Targets to Prevent Pathological Bone Resorption
Authors: Trebec-Reynolds, Diana Patricia
Advisor: Manolson, Morris Frank
Department: Biochemistry
Keywords: Osteoclast
Issue Date: 1-Sep-2010
Abstract: Inflammatory bone diseases like rheumatoid arthritis and periodontal disease lead to increased bone loss in the inflamed areas. The multinucleated bone resorbing cells, the osteoclasts, present in these diseases are larger than normal, and these larger osteoclasts (10+ nuclei) resorb more bone and more often than smaller osteoclasts (2-5 nuclei). Thus, the focus of this thesis was to determine if there are differences in mechanisms of osteoclast activation between large and small osteoclasts. Experiments using authentic rabbit osteoclasts and RAW 264.7-derived osteoclasts revealed differences in the expression of a number of activating factors; with large osteoclasts expressing higher levels of activating receptors (RANK, IL-1RI, TNFR1 and integrins αv and β3), as well as enzymes involved in cellular resorption, while small osteoclasts expressed higher levels of an alleged fusion receptor and the inhibitory receptor, IL-1RII. Further studies revealed that large osteoclasts more readily responded to stimulation by IL-1 compared to small osteoclasts and at lower concentrations suggesting this is a result of their higher expression of activating receptors. Differences in responses to the IL-1 isoforms, IL-1α and IL-1β, were also seen in large osteoclasts: IL-1α generated more large osteoclasts over the course of differentiation, while IL-1β induced changes in cell morphology and in the induction of integrin β3 phosphorylation. These observations suggested that differences in osteoclast responses are induced by IL-1α and IL-1β and it led to the hypothesis that there are differences in signaling between large and small osteoclasts. To elucidate differences in signaling mechanisms a signaling pathway microarray was used which revealed higher expression of Vegfa in large compared to small osteoclasts. Osteoclast differentiation with RANKL increased Vegfa gene expression in a time-dependent manner and VEGF-A secretion was elevated in populations enriched for large osteoclasts. Furthermore, mechanistic studies with inhibitors of transcription factors involved in differentiation revealed that RANKL-mediated Vegfa expression in large osteoclasts was regulated by the NF-κB pathway via induction of Hif1α. These results support the hypothesis that signaling differences exist between large and small osteoclasts and implicates VEGF-A in osteoclast hyperactivity in inflammatory conditions.
URI: http://hdl.handle.net/1807/24896
Appears in Collections:Doctoral
Department of Biochemistry - Doctoral theses

Files in This Item:

File Description SizeFormat
Trebec-Reynolds_Diana_P_201006_PhD_thesis.pdf7.61 MBAdobe PDF

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.