test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/24913

Title: The Plant Transcriptome and Its Response to Envrionmental Stimuli
Authors: Wilkins, Olivia
Advisor: Campbell, Malcolm M.
Department: Cell and Systems Biology
Keywords: Drought
Hybrid poplar
Issue Date: 2-Sep-2010
Abstract: The relationship between an organism’s genome, developmental stage, and environment is complex. The aim of the research presented herein was to provide experimental evidence to contribute to the annotation of the P. trichocarpa genome and to test two major hypotheses addressing the interaction between drought and time of day in A. thaliana and in two hybrid Populus clones. In order to generate data to address these aims, three separate experiments were undertaken. First, all members of the R2R3-MYB family of transcription factors in the P. trichocarpa genome were characterised by phylogenetic analysis and their transcript accumulation patterns across a range of tissues and organs were assessed using whole genome poplar microarrays. Results of this analysis indicated that expansion and diversification of the R2R3-MYB family may have contributed to phenotypic innovation in the Populus lineage. Second, drought-responsive transcriptome adjustments of two hybrid poplar clones, DN34 (P. deltoides X P. nigra) and NM6 (P. nigra X P. maxiomowiczii) were assessed for time-of-day and genotype dependent patterns. For each genotype, each of four time points was characterised by discrete sets of drought-responsive genes. Furthermore, while a number of genes were identified that were responsive to drought in both genotypes, a much larger number of genotype-dependent, drought-responsive transcriptome changes were detected. Finally, the drought-responsive transcriptome adjustments A. thaliana plants were assessed for time-of-day dependent accumulation patterns. Results of this analysis indicate that time-of-day-dependent differences in the drought response were manifest as changes of different magnitudes for a conserved set of genes across the four time points measured. These results emphasise the complex interplay of a plant’s genome, developmental stage, and environment in shaping the observed transcriptome.
URI: http://hdl.handle.net/1807/24913
Appears in Collections:Doctoral
Department of Cell and Systems Biology - Doctoral theses

Files in This Item:

File Description SizeFormat
Wilkins_Olivia_201006_PhD_thesis.pdf23.17 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.