test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/25735

Title: The Functional Integration of Adult-born Granule Cells into Dentate Gyrus Circuitry
Authors: Krakowski, Aneta
Advisor: Frankland, Paul
Department: Medical Science
Keywords: neurogenesis
dentate gyrus
Issue Date: 7-Jan-2011
Abstract: New neurons are generated throughout adulthood in the dentate gyrus of the hippocampus. The aim of the current study was to address whether differences in the morphological complexity of adult-born granule cells affect their integration into existing dentate gyrus circuitry. To selectively label proliferating cells, we injected a CAG-retrovirus into the dentate gyrus of mice. Either 10, 20, 40, or 80 days following viral infection, mice were injected with pentylenetetrazol (PTZ) to induce hippocampal activation, and expression of the immediate early gene c-fos was used as a marker of activated neurons. We then compared morphological features of neurons across age groups and between Fos+ and Fos- neurons within each age group. We found that dendritic length and branch number increased from 10 to 20 days post infection. Unexpectedly, we also found that dendritic length and branch number decreased from 20 to 40 days post infection, suggesting that the maturation of adult-generated neurons is associated with an active pruning process. Furthermore, we found no significant difference in morphological complexity between Fos+ and Fos- neurons, suggesting that dendritic morphology does not influence integration into dentate gyrus circuitry.
URI: http://hdl.handle.net/1807/25735
Appears in Collections:Master
Institute of Medical Science - Master theses

Files in This Item:

File Description SizeFormat
Krakowski_Aneta_Dominika_201011_MSc_thesis.pdf1.01 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.