test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/26136

Title: Hypoxia Suppresses DNA Repair: Implications for Cancer Progression and Treatment
Authors: Chan, Norman
Advisor: Bristow, Robert
Department: Medical Biophysics
Keywords: Hypoxia
DNA Repair
Issue Date: 14-Feb-2011
Abstract: Acute and chronic hypoxia exists within the microenvironment of solid tumours and drives therapy resistance, genetic instability and metastasis. Despite its importance in solid tumour progression, very little is known regarding the functional consequences of hypoxia-mediated changes in the expression of DNA repair proteins. I studied the relationship between hypoxia and DNA repair using a prolonged chronic hypoxic gas treatment model in a variety of human tumour cell lines to mimic the dynamic state of proliferation and DNA repair in cells distant from the tumour blood vasculature. I observed decreased expression of homologous recombination (HR) and base excision repair (BER) proteins due to a novel mechanism involving decreased protein synthesis. Error-free HR was suppressed 3-fold under 0.2% O2 as measured by the DR-GFP reporter system and functional BER was impaired as assessed with a functional glycosylase assay. This decrease in protein expression and function resulted in increased sensitivity to the DNA damaging agents MMC, cisplatin, H2O2 and MMS. Additionally, chronically hypoxic cells were relatively radiosensitive (OER = 1.37) when compared to acutely hypoxic or anoxic cells (OER = 1.96 - 2.61). As HR defects are synthetically lethal with poly(ADP-ribose) polymerase 1 (PARP1) inhibition, I evaluated the sensitivity of repair-defective hypoxic cells to PARP inhibition. I observed increased clonogenic killing in HR-deficient hypoxic cells following inhibition or depletion of PARP1. PARP-inhibited hypoxic cells accumulated γH2AX foci consistent with an accumulation of collapsed replication forks. Additionally, tumour xenografts exposed to PARP1 inhibition showed increased γH2AX and cleaved caspase-3 expression in hypoxic subregions with suppressed RAD51 protein expression and decreased ex vivo clonogenic survival. I conclude that persistent down-regulation of DNA repair components by the microenvironment could result in faulty DNA repair with significant implications for therapeutic response and genetic instability in human cancers. Specifically, hypoxic cells may be sensitized to PARP inhibitors and other agents targeting repair pathways down-regulated by hypoxia as a consequence of microenvironment-mediated “contextual synthetic lethality”.
URI: http://hdl.handle.net/1807/26136
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Chan_Norman_201011_PhD_thesis.pdf3.48 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.