
TSpace at The University of Toronto Libraries >
School of Graduate Studies  Theses >
Doctoral >
Please use this identifier to cite or link to this item:
http://hdl.handle.net/1807/26249

Title:  Abrikosov Lattice Solutions of the GinzburgLandau Equations of Superconductivity 
Authors:  Tzaneteas, Tim 
Advisor:  Sigal, Israel Michael 
Department:  Mathematics 
Issue Date:  17Feb2011 
Abstract:  In this thesis we study the GinzburgLandau equations of superconductivity, which are among the basic nonlinear partial differential equations of Theoretical and Mathematical Physics. These equations also have geometric interest as equations for the section and connection of certain principal bundles and are related to SeibergWitten equations used extensively in Differential Geometry. In 1957, Abrokosov suggested that for sufficiently high magnetic fields there exist solutions for which all physical quantities have the periodicity of a lattice, with the magnetic field penetrating the superconductor at the vertices of the lattice (Abrikosov lattice solutions). The corresponding phenomenon was confirmed experimentally and is among the most interesting aspects of superconductivity and is discussed in every book on the subject. In 2003, Abrikosov was awarded the Nobel Prize in Physics for this discovery.
Building on the previous results in the subject we prove the existence of such lattices in the case where each lattice cell contains a single quantum of magnetic flux, and in the general case reduce the problem to an ndimensional problem, where n is the number of quanta of flux. We prove that for Type II superconductors, these solutions are stable, and in the case n = 1, we show that as the external magnetic field approaches the critical value at which superconductivity first appears, the lattice which minimizes the average free energy per lattice cell is the triangular lattice. 
URI:  http://hdl.handle.net/1807/26249 
Appears in Collections:  Doctoral

This item is licensed under a Creative Commons License
Items in TSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
