test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/26249

Title: Abrikosov Lattice Solutions of the Ginzburg-Landau Equations of Superconductivity
Authors: Tzaneteas, Tim
Advisor: Sigal, Israel Michael
Department: Mathematics
Issue Date: 17-Feb-2011
Abstract: In this thesis we study the Ginzburg-Landau equations of superconductivity, which are among the basic nonlinear partial differential equations of Theoretical and Mathematical Physics. These equations also have geometric interest as equations for the section and connection of certain principal bundles and are related to Seiberg-Witten equations used extensively in Differential Geometry. In 1957, Abrokosov suggested that for sufficiently high magnetic fields there exist solutions for which all physical quantities have the periodicity of a lattice, with the magnetic field penetrating the superconductor at the vertices of the lattice (Abrikosov lattice solutions). The corresponding phenomenon was confirmed experimentally and is among the most interesting aspects of superconductivity and is discussed in every book on the subject. In 2003, Abrikosov was awarded the Nobel Prize in Physics for this discovery. Building on the previous results in the subject we prove the existence of such lattices in the case where each lattice cell contains a single quantum of magnetic flux, and in the general case reduce the problem to an n-dimensional problem, where n is the number of quanta of flux. We prove that for Type II superconductors, these solutions are stable, and in the case n = 1, we show that as the external magnetic field approaches the critical value at which superconductivity first appears, the lattice which minimizes the average free energy per lattice cell is the triangular lattice.
URI: http://hdl.handle.net/1807/26249
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Tzaneteas_Tim_201011_PhD_thesis.pdf344.67 kBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft