test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/26252

Title: The Physiological Ecology of C3-C4 Intermediate Eudicots in Warm Environments
Authors: Vogan, Patrick
Advisor: Sage, Rowan F.
Department: Ecology and Evolutionary Biology
Keywords: C4 photosynthesis
Issue Date: 17-Feb-2011
Abstract: The C3 photosynthetic pathway uses light energy to reduce CO2 to carbohydrates and other organic compounds and is a central component of biological metabolism. In C3 photosynthesis, CO2 assimilation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which reacts with both CO2 and O2. While competitive inhibition of CO2 assimilation by oxygen is suppressed at high CO2 concentrations, O2 inhibition is substantial when CO2 concentration is low and O2 concentration is high; this inhibition is amplified by high temperature and aridity (Sage 2004). Atmospheric CO2 concentration dropped below saturating levels 25-30 million years ago (Tipple & Pagani 2007), and the C4 photosynthetic pathway is hypothesized to have first evolved in warm, low latitude environments around this time (Christin et al. 2008a). The primary feature of C4 photosynthesis is suppression of O2 inhibition through concentration of CO2 around Rubisco. This pathway is estimated to have evolved almost 50 times across 19 angiosperm families (Muhaidat et al. 2007), a remarkable example of evolutionary convergence. In several C4 lineages, there are species with photosynthetic traits that are intermediate between the C3 and C4 states, known as C3-C4 intermediates. In two eudicot genera, Flaveria (Asteraceae) and Alternanthera (Amaranthaceae), there is evidence that these species represented an intermediate state in the evolution of the C4 pathway (McKown et al. 2005; Sanchez-del Pino 2009). The purpose of this thesis is to ascertain the specific benefits to plant carbon balance and resource-use efficiencies of the C3-C4 pathway relative to C3 species, particularly at low CO2 concentrations and high temperatures, factors which are thought to have been important in selecting for C3-C4 traits (Ehleringer et al. 1991). This will provide information on the particular advantages of the C3-C4 pathway in warm, often arid environments and how these advantages may have been important in advancing the initial stages of C4 evolution in eudicots. This thesis addresses the physiological intermediacy of previously uncharacterized C3-C4 species of Heliotropium (Boraginaceae); the water- and nitrogen-use efficiencies of C3-C4 species of Flaveria; and the photosynthetic performance and acclimation of C3, C4 and C3-C4 species of Heliotropium, Flaveria and Alternanthera grown at low and current ambient CO2 levels and high temperature.
URI: http://hdl.handle.net/1807/26252
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Vogan_Patrick_J_201011_PhD_thesis.pdf1.81 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.