test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/26271

Title: Integrality Gaps for Strong Linear Programming and Semidefinite Programming Relaxations
Authors: Georgiou, Konstantinos
Advisor: Pitassi, Toniann
Department: Computer Science
Keywords: integrality gap
lift and project systems
convex optimization
combinatorial optimization
linear programming relaxations
semidefinite programming relaxations
minimum vertex cover
constraint satisfaction problem
Max Cut
Lovasz-Schrijver system
Sherali-Adams system
Lasserre system
hardness of approximation
Issue Date: 17-Feb-2011
Abstract: The inapproximability for NP-hard combinatorial optimization problems lies in the heart of theoretical computer science. A negative result can be either conditional, where the starting point is a complexity assumption, or unconditional, where the inapproximability holds for a restricted model of computation. Algorithms based on Linear Programming (LP) and Semidefinite Programming (SDP) relaxations are among the most prominent models of computation. The related and common measure of efficiency is the integrality gap, which sets the limitations of the associated algorithmic schemes. A number of systematic procedures, known as lift-and-project systems, have been proposed to improve the integrality gap of standard relaxations. These systems build strong hierarchies of either LP relaxations, such as the Lovasz-Schrijver (LS) and the Sherali-Adams (SA) systems, or SDP relaxations, such as the Lovasz-Schrijver SDP (LS+), the Sherali-Adams SDP (SA+) and the Lasserre (La) systems. In this thesis we prove integrality gap lower bounds for the aforementioned lift-and-project systems and for a number of combinatorial optimization problems, whose inapproximability is yet unresolved. Given that lift-and-project systems produce relaxations that have given the best algorithms known for a series of combinatorial problems, the lower bounds can be read as strong evidence of the inapproximability of the corresponding optimization problems. From the results found in the thesis we highlight the following: For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) LS+ relaxation of the Vertex Cover polytope has integrality gap 2-epsilon. The integrality gap of the standard SDP for Vertex Cover remains 2-o(1) even if all hypermetric inequalities are added to the relaxation. The resulting relaxations are incomparable to the SDP relaxations derived by the LS+ system. Finally, the addition of all ell1 inequalities eliminates all solutions not in the integral hull. For every epsilon>0, the level-Omega(sqrt(log n/ log log n)) SA relaxation of Vertex Cover has integrality gap 2-epsilon. The integrality gap remains tight even for superconstant-level SA+ relaxations. We prove a tight lower bound for the number of tightenings that the SA system needs in order to prove the Pigeonhole Principle. We also prove sublinear and linear rank bounds for the La and SA systems respectively for the Tseitin tautology. Linear levels of the SA+ system treat highly unsatisfiable instances of fixed predicate-P constraint satisfaction problems over q-ary alphabets as fully satisfiable, when the satisfying assignments of the predicates P can be equipped with a balanced and pairwise independent distribution. We study the performance of the Lasserre system on the cut polytope. When the input is the complete graph on 2d+1 vertices, we show that the integrality gap is at least 1+1/(4d(d+1)) for the level-d SDP relaxation.
URI: http://hdl.handle.net/1807/26271
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Georgiou_Konstantinos_201011_PhD_thesis.pdf1.67 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft