test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/26311

Title: Kernel-based Copula Processes
Authors: Ng, Eddie Kai Ho
Advisor: Jaimungal, Sebastian
Department: Electrical and Computer Engineering
Keywords: copula
time-series analysis
Issue Date: 22-Feb-2011
Abstract: The field of time-series analysis has made important contributions to a wide spectrum of applications such as tide-level studies in hydrology, natural resource prospecting in geo-statistics, speech recognition, weather forecasting, financial trading, and economic forecasts and analysis. Nevertheless, the analysis of the non-Gaussian and non-stationary features of time-series remains challenging for the current state-of-art models. This thesis proposes an innovative framework that leverages the theory of copula, combined with a probabilistic framework from the machine learning community, to produce a versatile tool for multiple time-series analysis. I coined this new model Kernel-based Copula Processes (KCPs). Under the new proposed framework, various idiosyncracies can be modeled compactly via a kernel function for each individual time-series, and long-range dependency can be captured by a copula function. The copula function separates the marginal behavior and serial dependency structures, thus allowing them to be modeled separately and with much greater flexibility. Moreover, the codependent structure of a large number of time-series with potentially vastly different characteristics can be captured in a compact and elegant fashion through the notion of a binding copula. This feature allows a highly heterogeneous model to be built, breaking free from the homogeneous limitation of most conventional models. The KCPs have demonstrated superior predictive power when used to forecast a multitude of data sets from meteorological and financial areas. Finally, the versatility of the KCP model is exemplified when it was successfully applied to non-trivial classification problems unaltered.
URI: http://hdl.handle.net/1807/26311
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Ng_Eddie_K_201011_PhD_thesis.pdf6.4 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft