test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/27342

Title: Soot Measurements in High-pressure Diffusion Flames of Gaseous and Liquid Fuels
Authors: Intasopa, Gorngrit
Advisor: Gulder, Omer L.
Department: Aerospace Science and Engineering
Keywords: combustion
soot
diffusion flames
high pressure
methane
ethane
heptane
Issue Date: 30-May-2011
Abstract: Methane-air, ethane-air, and n-heptane-air over-ventilated co-flow laminar diffusion flames were studied up to pressures of 2.03, 1.52, and 0.51 MPa, respectively, to determine the effect of pressure on flame shape, soot concentration, and temperature. A spectral soot emission optical diagnostic method was used to obtain the spatially resolved soot formation and temperature data. In all cases, soot formation was enhanced by pressure, but the pressure sensitivity decreased as pressure was increased. The maximum fuel carbon conversion to soot, ηmax, was approximated by a power law dependence with the pressure exponent of 0.92 between 0.51 and 1.01 MPa, and 0.68 between 1.01 and 2.03 MPa with ηmax=9.5% at 2.03 MPa for methane-air flames. For ethane-air flames, the pressure exponent was 1.57 between 0.20 and 0.51 MPa, 1.08 between 0.51 and 1.01 MPa, and 0.58 between 1.01 and 1.52 MPa where ηmax=23% at 1.52 MPa. For nitrogen-diluted n-heptane-air flames, ηmax=6.5% at 0.51 MPa.
URI: http://hdl.handle.net/1807/27342
Appears in Collections:Master

Files in This Item:

File Description SizeFormat
Intasopa_Gorngrit_201103_MASc_thesis.pdf12.05 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft