test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/27570

Title: MADD-2, a Homolog of the Opitz Syndrome Protein MID1, Regulates Guidance to the Midline in Caenorhabditis elegans
Authors: Alexander, Mariam
Advisor: Roy, Peter John
Department: Molecular and Medical Genetics
Keywords: Caenorhabditis elegans
guidance
Issue Date: 9-Jun-2011
Abstract: Cell migration and extension is essential for development. The ability of a cell or cell extension to reach its target is dependent on spatial cues and receptors that translate positional information into directed plasma membrane extension. For example, the UNC-40/DCC receptor is required to direct circumferential migrations towards the source of the ligand, UNC-6/Netrin, expressed at the ventral midline. To better understand the process of cell extension, I used a specialized process called muscle arms as a model system. In C. elegans, body wall muscles (BWMs) extend membrane projections called muscle arms to the nearest nerve cord at the midline. These muscle arms harbor the postsynaptic element of the neuromuscular junction and extend in a stereotypical and regulated manner. In a screen for muscle arm development defective (Madd) mutants, I isolated madd-2, a novel component of the UNC-40 pathway. MADD-2 is a C-1 TRIM protein and functions cell-autonomously to direct numerous muscle and axon extensions to the ventral midline of worms. In a striking analogy, mutations in a human homologue of MADD-2, MID1, cause numerous ventral midline defects that culminate as Opitz Syndrome. How MID1 regulates midline development is unclear. MADD-2 enhances UNC-40 pathway activity by facilitating the physical interaction between UNC-40 and the downstream Rho-GEF, UNC-73. It is possible that MID1 may mediate the function of a DCC-like pathway at the ventral midline of humans. This work provides the first indication that C1-TRIM proteins may have a conserved biological role of regulating midline-oriented development events and may provide key insights into the role of MID1 in the pathogenesis of Opitz syndrome.
URI: http://hdl.handle.net/1807/27570
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Alexander_Mariam_201103_PhD_thesis.pdf7.18 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft