test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/29627

Title: Characterization of Activated Carbon for Taste and Odour Control
Authors: Smith, Kyla Miriam
Advisor: Hofmann, Ronald
Department: Civil Engineering
Keywords: activated carbon
geosmin
MIB
water treatment
Issue Date: 25-Aug-2011
Abstract: Iodine number, BET surface area, taste and odour compound isotherms, and trace capacity number tests were used to rank five different granular activated carbons according to thermodynamic adsorption performance. These tests were compared to expected activated carbon service life and loading results of rapid small-scale column tests (RSSCTs) run with water from two lake sources spiked with geosmin and 2-methylisoborneol (MIB). Trace capacity number, used to specifically identify high adsorption energy sites on activated carbon, was hypothesized to be correlated to geosmin/MIB breakthrough and loading performance of different activated carbons. This study found no such clear correlation. However, when only bituminous coal activated carbons were considered, correlations to MIB breakthrough were strengthened. Natural organic matter (NOM) adversely affected adsorption, resulting in decreased RSSCT throughput to breakthrough in surface water with higher total organic carbon (TOC). Methods for improving characterization tests and RSSCTs when NOM is present are discussed.
URI: http://hdl.handle.net/1807/29627
Appears in Collections:Master

Files in This Item:

File Description SizeFormat
Smith_Kyla_M_201106_MASc_thesis.pdf1.26 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft