test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/29786

Title: Estimating Non-homogeneous Intensity Matrices in Continuous Time Multi-state Markov Models
Authors: Lebovic, Gerald
Advisor: Tomlinson, George
Department: Dalla Lana School of Public Health
Keywords: Biostatistics
Multi State Models
Ordinal Data
Issue Date: 31-Aug-2011
Abstract: Multi-State-Markov (MSM) models can be used to characterize the behaviour of categorical outcomes measured repeatedly over time. Kalbfleisch and Lawless (1985) and Gentleman et al. (1994) examine the MSM model under the assumption of time-homogeneous transition intensities. In the context of non-homogeneous intensities, current methods use piecewise constant approximations which are less than ideal. We propose a local likelihood method, based on Tibshirani and Hastie (1987) and Loader (1996), to estimate the transition intensities as continuous functions of time. In particular the local EM algorithm suggested by Betensky et al. (1999) is employed to estimate the in-homogeneous intensities in the presence of missing data. A simulation comparing the piecewise constant method with the local EM method is examined using two different sets of underlying intensities. In addition, model assessment tools such as bandwidth selection, grid size selection, and bootstrapped percentile intervals are examined. Lastly, the method is applied to an HIV data set to examine the intensities with regard to depression scores. Although computationally intensive, it appears that this method is viable for estimating non-homogeneous intensities and outperforms existing methods.
URI: http://hdl.handle.net/1807/29786
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Lebovic_Gerald_B_201106_PhD_thesis.pdf1.42 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft