test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/29971

Title: Role of Microornas in Tumroigenesis and their Modulation by Versican 3' Untranslated Region
Authors: Lee, Daniel Yen-Hong
Advisor: Yang, Burton B.
Department: Laboratory Medicine and Pathobiology
Keywords: microRNA
Issue Date: 15-Sep-2011
Abstract: MicroRNA is a single-stranded RNA molecule of about 22 nucleotides in length and is expressed endogenously. It functions as a gene regulator by pairing imperfectly with 3’ untranslated region (3’UTR) of target mRNAs, leading to translational inhibition. MicroRNA is implicated in many regulatory pathways and hence affects various cellular activities. In the development of cancer, genetic alterations occurred at miRNA locus and its expression level is dysregulated in various cancers versus normal tissue counterparts. It is thus important to find the targets of dysregulated microRNAs contributing to progression of cancer. To facilitate long term functional studies, a microRNA expression construct with unique futures was generated. Stable expression of miR-378 enhanced cell survival, reduced caspase-3 activity, and promoted tumor growth and angiogenesis. By algorithmic predictions and proteomic analysis, two tumor suppressors, SuFu and Fus-1, were found to be translationally regulated by miR-378. Target validation was confirmed by co-transfection experiments and luciferase activity assays, reassuring its oncogenic role by regulating two tumor suppressor genes simultaneously. Conversely, microRNA can also function as a tumor suppressor by modulating expression of Versican, an extracellular matrix protein known to facilitate tumorigenesis and angiogenesis. By a novel PCR method, more than one microRNA were found to bind to Versican 3’UTR. iii Among these microRNAs, targeting of Versican and Fibronectin by miR199a-3p was validated. Expression of a fragment of Versican 3’UTR was expected to antagonize the function of miR-199a-3p. Stable expression of Versican 3’UTR resulted change in cell morphology and increased cell-cell adhesion. Analysis of primary tissues from transgenic mice expressing versican 3’UTR showed an increase expression of Versican and Fibronectin, and organ adhesion was found between liver and its surrounding tissues. In addition, 3’UTR also modulated the level of miR-199a-3p and miR-136, alleviating translation of negative cell cycle regulators, PTEN and Rb1. This resulted in reduced cell proliferation and hence diminished tumor growth. These findings suggest a role of microRNA in tumor growth, providing a valuable target for therapeutic intervention.
URI: http://hdl.handle.net/1807/29971
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Lee_Daniel_Y_201006_PhD_thesis.pdfMain Thesis6.24 MBAdobe PDF
View/Open
Appendix B.pdfAppendix B803.99 kBAdobe PDF
View/Open
Appendix C.pdfAppendix C2.26 MBAdobe PDF
View/Open

This item is licensed under a Creative Commons License
Creative Commons

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft