test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/31801

Title: Characterization of the Neurospora Varkud Satellite Plasmid and Transcript in vivo
Authors: Keeping, Andrew
Advisor: Collins, Rick
Department: Molecular and Medical Genetics
Keywords: Neurospora
VS
Issue Date: 10-Jan-2012
Abstract: The Varkud satellite (VS) plasmid is found in the mitochondria of some strains of Neurospora, and exhibits properties that may allow it to be developed as a genetic transformation vector to study mitochondrial molecular biology. An ideal transformation vector would not confer a phenotype. The overall goal of my thesis was to examine interactions of VS with its Neurospora host to identify possible phenotypes, using biochemical and proteomic approaches. Biochemical experiments provided evidence consistent with the plasmid transcript, VS RNA, being present as a ribonucleoprotein particle that can be separated from ribosomal subunits by sucrose density gradient centrifugation; however, no VS-specific proteins were identified under the purification conditions examined. During the analyses of proteomic data I obtained new insights into the consequences of the statistical methods commonly used to normalize quantitative 2D gel data. However, irrespective of the method used, the fraction of the proteome amenable to 2D gel-based proteomics revealed, at most, subtle effects of VS on the abundance of a few proteins. I also observed no differences in growth rate between strains differing by the presence or absence of VS when grown in the presence of inhibitors and stressors affecting a wide range of mitochondrial and other cellular functions. Overall, despite VS RNA being as abundant as the large and small mitochondrial ribosomal RNAs, my genetic, biochemical and proteomic investigations of the effect of VS on its host strain provides evidence that VS is a phenotypically neutral element.
URI: http://hdl.handle.net/1807/31801
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Keeping_Andrew_J_201111_PhD_thesis.pdfThesis3.62 MBAdobe PDF
View/Open
Keeping_Andrew_J_201111_PhD_proteomicdata.xlsSupplementary Data1.25 MBMicrosoft Excel
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft