test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/31991

Title: Early Fault Detection for Gear Shaft and Planetary Gear Based on Wavelet and Hidden Markov Modeling
Authors: Yu, Jing
Advisor: Makis, Viliam
Department: Mechanical and Industrial Engineering
Keywords: Early Fault Detection
Hidden Markov Modeling
Issue Date: 12-Jan-2012
Abstract: Fault detection and diagnosis of gear transmission systems have attracted considerable attention in recent years, due to the need to decrease the downtime on production machinery and to reduce the extent of the secondary damage caused by failures. However, little research has been done to develop gear shaft and planetary gear crack detection methods based on vibration signal analysis. In this thesis, an approach to gear shaft and planetary gear fault detection based on the application of the wavelet transform to both the time synchronously averaged (TSA) signal and residual signal is presented. Wavelet approaches themselves are sometimes inefficient for picking up the fault signal characteristic under the presence of strong noise. In this thesis, the autocovariance of maximal energy wavelet coefficients is first proposed to evaluate the gear shaft and planetary gear fault advancement quantitatively. For a comparison, the advantages and disadvantages of some approaches such as using variance, kurtosis, the application of the Kolmogorov-Smirnov test (K-S test), root mean square (RMS) , and crest factor as fault indicators with continuous wavelet transform (CWT) and discrete wavelet transform (DWT) for residual signal, are discussed. It is demonstrated using real vibration data that the early faults in gear shafts and planetary gear can be detected and identified successfully using wavelet transforms combined with the approaches mentioned above. In the second part of the thesis, the planetary gear deterioration process from the new condition to failure is modeled as a continuous time homogeneous Markov process with three states: good, warning, and breakdown. The observation process is represented by two characteristics: variance and RMS based on the analysis of autocovariance of DWT applied to the TSA signal obtained from planetary gear vibration data. The hidden Markov model parameters are estimated by maximizing the pseudo likelihood function using the EM iterative algorithm. Then, a multivariate Bayesian control chart is applied for fault detection. It can be seen from the numerical results that the Bayesian chart performs better than the traditional Chi-square chart.
URI: http://hdl.handle.net/1807/31991
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Yu_Jing_201111_Phd_thesis.pdf2.38 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft