test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/32038

Title: Conductive Anodic Filament (CAF) Formation
Authors: Caputo, Antonio
Advisor: Perovic, Doug
Turbini, Laura
Department: Materials Science and Engineering
Keywords: solder flux
printed wiring boards
conductive anodic filament
Issue Date: 18-Jan-2012
Abstract: Conductive anodic filament (CAF) is a failure mode in printed wiring boards (PWBs) which occurs under high humidity and high voltage gradient conditions. The filament, a copper salt, grows from anode to cathode along the epoxy-glass interface. Ready and Turbini (2000) identified this copper salt as the Cu2(OH)3Cl, atacamite compound. This work has investigated the influence of polyethylene glycol (PEG) and polyethylene propylene glycol (PEPG) fluxing agents on the chemical nature of CAF. For coupons processed with PEPG flux, with and without chloride, a copper-chloride containing compound was formed in the polymer matrix. This compound was characterized using x-ray photoelectron spectroscopy (XPS) as CuCl and an electrochemical mechanism for the formation of the chloride-containing CAF has been proposed. For PEG flux, with and without chloride, it has been shown that CAF only formed, but no copper containing compound formed in the matrix. It appears for PEG fluxed coupons, a PEG-Cu-Cl complex forms, binds the available Cu and acts as a barrier to the formation of CuCl in the polymer matrix. Meeker and Lu Valle (1995) have previously proposed that CAF failure is best represented by two competing reactions – the formation of a copper chloride corrosion compound (now identified as Cu2(OH)3Cl) and the formation of innocuous trapped chlorine compounds. Since no evidence of any trapped chloride compounds has been found, we propose that the formation of CAF is best represented by a single non-reversible reaction. For coupons processed with a high bromide-containing flux, bromide containing CAF was created and characterized using transmission electron microscopy (TEM) to be Cu2(OH)3Br. In addition, a copper-containing compound was formed in the polymer matrix and characterized using XPS as CuBr. An electrochemical mechanism for the formation of bromide-containing CAF has been proposed based on the XPS data. .
URI: http://hdl.handle.net/1807/32038
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Caputo_Antonio_201011_PhD_thesis.pdf24.48 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft