test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works

Advanced Search
& Collections
Issue Date   
Sign on to:   
Receive email
My Account
authorized users
Edit Profile   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/32682

Title: The Effects of Crosslinking on Foaming of EVA
Authors: Chen, Nan
Advisor: Park, Chul B.
Department: Mechanical and Industrial Engineering
Keywords: polymer foaming
Issue Date: 20-Aug-2012
Abstract: The effects of crosslinking on EVA foaming are studied in this thesis. A fundamental approach was applied to describe the influences of crosslinking on EVA/gas viscosities, gas solubility and diffusivity in EVA, EVA foaming nucleation and early stage of bubble growth, which leads to a better understanding of the plastic foaming mechanism. Although crosslinked polyolefin foaming technology has been well applied in industry, more fundamental and thorough studies are demanded to understand the mechanism, which can serve to improve the present technology. The shear and extensional viscosities have been measured for the chemically crosslinked EVA with dissolved gas which could not be found from literature. Furthermore, by controlling the crosslinking agent amount, the polymer melt strength/viscosity can be controlled, so as to obtain optimum foam morphology. The crosslinking also has effects on the diffusivity and solubility of a blowing agent inside EVA. The solubility and the diffusivity of the blowing agent in the EVA decrease with the crosslinking degree increases. The diffusivity decrease makes more gas is utilized for the foaming rather than leak out of the polymer matrix quickly. This thesis also presents the fundamental studies on the effects of crosslinking on cell nucleation and early bubble growth. Theoretical work and in-situ visualization experimental results indicate that partial crosslinking leads to higher cell nucleation density and slower bubble growth, both of which benefit a fine-cell foam morphology generation. Last but not least, an optimized foaming process was conducted to produce chemically crosslinked EVA foams with large expansion ratios in a batch system, using a chemical blowing agent. The results determine that an optimal crosslinking degree is critical for the crosslinked EVA foaming with maximum expansion ratio. Furthermore, all research results not only benefit the foaming of crosslinked EVA, but also serve the better production of other crosslinked polyolefin foams.
URI: http://hdl.handle.net/1807/32682
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
Chen_Nan_201206_PhD_thesis.pdf2.05 MBAdobe PDF

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.