test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Doctoral >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/32782

Title: Multiple Classifier Strategies for Dynamic Physiological and Biomechanical Signals
Authors: Nikjoo Soukhtabandani, Mohammad
Advisor: Chau, Tom
Department: Electrical and Computer Engineering
Keywords: Multiple classifier system
Mixture of experts
Classifier fusion
Adaptive classifier combination
Physiological and biomechanical signals
Issue Date: 30-Aug-2012
Abstract: Access technologies often deal with the classification of several physiological and biomechanical signals. In most previous studies involving access technologies, a single classifier has been trained. Despite reported success of these single classifiers, classification accuracies are often below clinically viable levels. One approach to improve upon the performance of these classifiers is to utilize the state of- the-art multiple classifier systems (MCS). Because MCS invoke more than one classifier, more information can be exploited from the signals, potentially leading to higher classification performance than that achievable with single classifiers. Moreover, by decreasing the feature space dimensionality of each classifier, the speed of the system can be increased. MCSs may combine classifiers on three levels: abstract, rank, or measurement level. Among them, abstract-level MCSs have been the most widely applied in the literature given the flexibility of the abstract level output, i.e., class labels may be derived from any type of classifier and outputs from multiple classifiers, each designed within a different context, can be easily combined. In this thesis, we develop two new abstract-level MCSs based on "reputation" values of individual classifiers: the static reputation-based algorithm (SRB) and the dynamic reputation-based algorithm (DRB). In SRB, each individual classifier is applied to a “validation set”, which is disjoint from training and test sets, to estimate its reputation value. Then, each individual classifier is assigned a weight proportional to its reputation value. Finally, the total decision of the classification system is computed using Bayes rule. We have applied this method to the problem of dysphagia detection in adults with neurogenic swallowing difficulties. The aim was to discriminate between safe and unsafe swallows. The weighted classification accuracy exceeded 85% and, because of its high sensitivity, the SRB approach was deemed suitable for screening purposes. In the next step of this dissertation, I analyzed the SRB algorithm mathematically and examined its asymptotic behavior. Specifically, I contrasted the SRB performance against that of majority voting, the benchmark abstract-level MCS, in the presence of different types of noise. In the second phase of this thesis, I exploited the idea of the Dirichlet reputation system to develop a new MCS method, the dynamic reputation-based algorithm, which is suitable for the classification of non-stationary signals. In this method, the reputation of each classifier is updated dynamically whenever a new sample is classified. At any point in time, a classifier’s reputation reflects the classifier’s performance on both the validation and the test sets. Therefore, the effect of random high-performance of weak classifiers is appropriately moderated and likewise, the effect of a poorly performing individual classifier is mitigated as its reputation value, and hence overall influence on the final decision is diminished. We applied DRB to the challenging problem of discerning physiological responses from nonverbal youth with severe disabilities. The promising experimental results encourage further development of reputation-based multi-classifier systems in the domain of access technology research.
URI: http://hdl.handle.net/1807/32782
Appears in Collections:Doctoral

Files in This Item:

File Description SizeFormat
NikjooSoukhtabandani_Mohammad_201206_PhD_thesis.pdf974.33 kBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft