test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
School of Graduate Studies - Theses >
Master >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/33307

Title: Homo-FRET Imaging of CEACAM1 in Living Cells using Total Internal Reflection Fluorescence Polarization Microscopy
Authors: Lo, Jocelyn
Advisor: Yip, Christopher M.
Department: Biomedical Engineering
Keywords: Fluorescence polarization microscopy
CEACAM1
Total internal reflection fluorescence microscopy
Oligomerization
Issue Date: 20-Nov-2012
Abstract: Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes homotypic and heterotypic cis- and trans- interactions that regulate processes including metabolism, immune response, and tumorigenesis. To better understand and eventually control CEACAM1’s numerous roles, we characterized the localization, homotypic cis-oligomerization, and regulation of CEACAM1 at the molecular scale using steady-state TIRFPM homo-FRET imaging in living cells. We established the anisotropy sensitivity of our TIRFPM platform using Venus monomers and dimers, which had significantly different anisotropy values. Heterogeneously distributed across the plasma membrane, CEACAM1-4L-EYFP was a mixture of monomers and oligomers, with a slightly more monomeric population at the high intensity regions. In addition, perturbation with ionomycin or α-CEA pAb increased CEACAM1 monomers, potentially in a localized manner. Although limited in detecting any anisotropy differences between CEACAM1-4L-EYFP and monomeric G432,436L-CEACAM1-4L-EYFP populations, TIRFPM homo-FRET imaging can be a useful tool for studying membrane protein self-association with proper controls and studies that focus on relative anisotropy changes.
URI: http://hdl.handle.net/1807/33307
Appears in Collections:Master

Files in This Item:

File Description SizeFormat
Lo_Jocelyn_R_201211_MASc_thesis.pdf4.88 MBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft