test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
Journal of Medical Internet Research >
Volume 1 (1999) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/4433


Title: Borderless Teleradiology with CHILI
Authors: Engelmann, Uwe
Schroeter, A
Schwab, M
Eisenmann, U
Vetter, M
Lorenz, K
Quiles, J
Wolf, I
Evers, H
Meinzer, HP
Keywords: Original Paper
Teleradiology
Telemedicine
Remote Consultation
Diagnostic Imaging
Computer-Assisted Image Interpretation
PACS
Middleware
TLS
Security
Plugin
Visualization
Issue Date: 13-Dec-1999
Publisher: Gunther Eysenbach; Centre for Global eHealth Innovation, Toronto, Canada
Citation: Uwe Engelmann, A Schroeter, M Schwab, U Eisenmann, M Vetter, K Lorenz, J Quiles, I Wolf, H Evers, HP Meinzer. Borderless Teleradiology with CHILI. J Med Internet Res 1999;1(2):e8 <URL: http://www.jmir.org/1999/2/e8/>
Abstract: [This item is a preserved copy and is not necessarily the most recent version. To view the current item, visit http://www.jmir.org/1999/2/e8/ ] Teleradiology is one of the most evolved areas of telemedicine, but one of the basic problems which remains unsolved concerns system compatibility. The DICOM (Digital Imaging and Communications in Medicine) standard is a prerequisite, but it is not sufficient in all aspects. Examples of other currently open issues are security and cooperative work in synchronous teleconferences. Users without a DICOM radiological workstation would benefit from the ability to join a teleradiology network without any special tools. Drawbacks of many teleradiology systems are that they are monolithic in their software design and cannot be adapted to the actual user's environment. Existing radiological systems currently cannot be extended with additional software components. Consequently, every new application usually needs a new workstation with a different look and feel, which must be connected and integrated into the existing infrastructure. This paper introduces the second generation teleradiology system CHILI. The system has been designed to match both the teleradiology requirements of the American College of Radiology (ACR), and the functionality and usability needs of the users. The experiences of software developers and teleradiology users who participated in the first years of the clinical use of CHILI's predecessor MEDICUS have been integrated into a new design. The system has been designed as a component-based architecture. The most powerful communication protocol for data exchange and teleconferencing is the CHILI protocol, which includes a strong data security concept. The system offers, in addition to its own secure protocol, several different communication methods: DICOM, classic e-mail, Remote Copy functions (RCP), File Transfer Protocol (FTP), the internet protocols HTTP (HyperText Transfer Protocol) and HTTPS (HyperText Transfer Protocol Secure),and CD-ROMs for off-line communication. These transfer methods allow the user to send images to nearly anyone with a computer and a network. The drawbacks of the non-CHILI protocols are that teleconferences are not possible, and that the user must take reasonable precautions for data privacy and security. The CHILI PlugIn mechanism enables the users or third parties to extend the system capabilities by adding powerful image postprocessing functions or interfaces to other information systems. Suitable PlugIns can be either existing programs, or dedicated applications programmed with interfaces to the CHILI components. The developer may freely choose programming languages and interface toolkits. The CHILI architecture is a powerful and flexible environment for Picture Archiving and Communications Systems (PACS)and teleradiology. More than 40 systems are currently running in clinical routine in Germany. More than 300,000 images have been distributed among the communication partners in the last two years. Feedback and suggestions from the users influenced the system architecture by a great extent. The proposed and implemented system has been optimized to be as platform independent, open, and secure as possible.
Description: Reviewer: Rodrigues, Roberto J
Reviewer: Keevil, Stephen
URI: http://hdl.handle.net/1807/4433
ISSN: 1438-8871
Other Identifiers: doi:10.2196/jmir.1.2.e8
Rights: Copyright (cc) Retained by author(s) under a Creative Commons License: http://creativecommons.org/licenses/by/2.0/
Appears in Collections:Volume 1 (1999)

Files in This Item:

File Description SizeFormat
jmir.html43.44 kBHTMLView/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft