test Browse by Author Names Browse by Titles of Works Browse by Subjects of Works Browse by Issue Dates of Works
       

Advanced Search
Home   
 
Browse   
Communities
& Collections
  
Issue Date   
Author   
Title   
Subject   
 
Sign on to:   
Receive email
updates
  
My Account
authorized users
  
Edit Profile   
 
Help   
About T-Space   

T-Space at The University of Toronto Libraries >
University of Toronto at Scarborough >
Biological Sciences >
Biology >

Please use this identifier to cite or link to this item: http://hdl.handle.net/1807/485

Title: Testing hypotheses of trophic level interactions: a boreal forest ecosystem
Authors: Sinclair, A.R.E.
Krebs, Charles
Fryxell, J.M.
Turkington, R.
Boutin, S.
Boonstra, Rudy
Seccombe-Hett, P.
Lundberg, P.
Oksanen, L.
Issue Date: 2000
Publisher: Oikos
Citation: Oikos 89: 313-328. Copenhagen 2000
Abstract: Models of community organization involve variations of the top-down (predator control) or bottom-up (nutrient limitation) hypotheses. Verbal models, however, can be interpreted in different ways leading to confusion. Therefore, we predict from first principles the range of possible trophic level interactions, and define mathematically the instantaneous effects of experimental perturbations. Some of these interactions are logically and biologically unfeasible. The remaining set of 27 feasible models is based on an initial assumption, for simplicity, of linear interactions between trophic levels. Many more complex and non-linear models are logically feasible but, for parsimony, simple ones are tested first. We use an experiment in the boreal forest of Canada to test predictions of instantaneous changes to trophic levels and distinguish between competing models. Seven different perturbations systematically removed each trophic level or, for some levels, supplemented them. The predictions resulting from the perturbations were concerned with the direction of change in biomass in the other levels. The direct effects of each perturbation produced strong top-down and bottom-up changes in biomass. At both the vegetation and herbivore levels top-down was stronger than bottom-up despite some compensatory growth stimulated by herbivory. The combination of experiments produced results consistent with two-way (reciprocal) interactions at each level. Indirect effects on one or two levels removed from the perturbation were either very weak or undetectable. Top-down effects were strong when direct but attenuated quickly. Bottom-up effects were less strong but persisted as indirect effects to higher levels. Although the 'pure reciprocal' model best fits our results for the boreal forest system different models may apply to different ecosystems around the world.
URI: http://hdl.handle.net/1807/485
Appears in Collections:Biology

Files in This Item:

File Description SizeFormat
Testing_hypothesis_of_tropical_level_interactions.pdf261.5 kBAdobe PDF
View/Open

Items in T-Space are protected by copyright, with all rights reserved, unless otherwise indicated.

uoft